Sains Malaysiana 53(1)(2024): 111-122
http://doi.org/10.17576/jsm-2024-5301-09
Kesan Pencernaan Gastrousus terhadap Ciri Fizikokimia dan Kebiotersediaan Antioksidan Produk Chia
(The Effects of
Gastrointestinal Digestion on the Physicochemical Characteristics and
Antioxidants Bioavailability of Chia Products)
ETTY SYARMILA IBRAHIM KHUSHAIRAY1, CHANG YU IAN1,
SALMA MOHAMAD YUSOP1,3,*,
MA’ARUF ABD GHANI2, MOHAMAD YUSOF MASKAT1,3, ABDUL SALAM
BABJI1,3 & NUR ALIAH DAUD1
1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Fakulti Perikanan dan Sains Makanan, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Pusat Inovasi Teknologi Manisan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received:
13 October 2023/Accepted: 11 January 2024
Abstrak
Chia (Salvia hispanica L.)
adalah bijirin pseudo yang kaya dengan asid lemak tak tepu (PUFA) dan
protein berfungsi. Kajian ini bertujuan untuk menentukan sifat fizikokimia dan
kebiotersediaan antioksidan produk chia iaitu tepung chia ternyah lemak (TCT),
pencilan protein chia (IPC), hidrolisat protein chia (HPC) dan nanokapsul
hidrolisat protein chia (nHPC). Simulasi model pencernaan gastrousus secara in-vitro telah mengasingkan protein chia kepada empat pecahan berbeza iaitu sampel
sebelum dicerna (ND), fraksi tercerna pasca-gastrik (PG), fraksi tercerna
pasca-usus yang diserap oleh kolon (PUa) dan fraksi tercerna pasca-usus yang
tertinggal dalam kolon (PUb). Sampel nHPC mencatatkan darjah hidrolisis (DH)
paling rendah (p<0.05) (19.72%) selepas fasa pencernaan gastrik dan tiada
perubahan signifikan (p<0.05) selepas pencernaan usus. Penyusutan
(p<0.05) nilai asid amino hidrofobik (AAH) dan asid amino aromatik (AAR)
bagi sampel nHPC direkodkan selepas pencernaan gastrousus (PUa), masing-masing
sebanyak 4.81 dan 3.95%. Berbanding semua sampel, HPC dan nHPC mencatatkan
nilai tertinggi (p<0.05) dalam ujian antioksidan DPPH (70.38 dan 68.10 µM TE),
ABTS (166.19 dan 167.14 µM TE) dan FRAP (73.25 dan 77.81 µM FeSO4.7H2OE). Pencernaan gastrousus
meningkatkan (p<0.05) potensi pemerangkapan radikal DPPH dan ABTS sampel TCT
dan IPC, sebaliknya mengurangkan (p<0.05) potensi antioksidan bagi sampel
HPC. Berdasarkan ujian FRAP, pencernaan gastrousus tidak memberi kesan
(p<0.05) terhadap kapasiti antioksidan bagi sampel nHPC. Kesimpulannya,
pencernaan gastrousus mempengaruhi sifat fisikokimia dan kebiotersediaan
antioksidan produk chia yang dikaji, memberikan kefahaman penting tentang
manfaat kesihatan dan aplikasi produk chia dalam diet pemakanan manusia.
Kata
kunci: Kebiotersediaan antioksidan; produk chia; profil asid amino; simulasi
model pencernaan gastrousus
Abstract
Chia (Salvia hispanica L.) is a pseudocereal rich in polyunsaturated
fatty acids (PUFA) and functional proteins. This study aims to determine the
physicochemical properties and antioxidative bioavailability of chia products, namely, defatted chia flour (TCT), chia
protein isolate (IPC), chia protein hydrolysates (HPC), and nano encapsulated chia hydrolysates (nHPC). An in-vitro gastrointestinal digestion simulation model separated chia protein into four
distinct fractions, namely, non-digested sample (ND), post-gastric digestion
fraction (PG), post-intestinal digested fraction absorbed by colon (PUa), and post-intestinal digested fraction remains in
colon (PUb). nHPC exhibited
the lowest (p<0.05) degree of hydrolysis (DH) (19.72%) after gastric phase,
and there were no significant changes (p<0.05) after intestinal digestion. A
significant decrease (p<0.05) in the hydrophobic amino acid (AAH) and
aromatic amino acid (AAR) values were recorded for the nHPC sample by 4.81 and 3.95%, respectively, after gastrointestinal digestion (PUa). Compared to all samples, HPC and nHPC recorded the highest (p<0.05) values in DPPH (70.38 and 68.10 µM TE), ABTS
(166.19 and 167.14 µM TE), and FRAP (73.25 and 77.81µM FeSO4.7H2OE). Gastrointestinal digestion
increased (p<0.05) the DPPH and ABTS radical scavenging potential for TCT
and IPC but reduced (p<0.05) the antioxidant potential for HPC. Based on
FRAP findings, gastrointestinal digestion had no effect (p<0.05) on
the antioxidant capacity of nHPC. In conclusion, gastrointestinal
digestion affects the physicochemical properties and antioxidative bioavailability of the chia products studied, providing an essential insight
into their health benefits and applications in human diet.
Keywords: Amino acids profiles; antioxidative bioavailability; chia products; simulated
gastrointestinal digestion model
REFERENCES
Abdul Manan, M., Samat, N., Kasran, M. & Hassan, H. 2017. Proximate and amino acids
composition of Monascus fermented products
with potential as functional feed ingredients. Cogent Food and Agriculture 3(1):
1295767.
Akbarian, M., Khani,
A., Eghbalpour, S. & Uversky,
V.N. 2022. Bioactive peptides: Synthesis, sources, applications, and proposed
mechanism of action. International Journal of Molecular Science 23(3):
1445.
Amigo, L. &
Hernandez-Ledesma, B. 2020. Current evidence on bioavailability of food
bioactive peptides. Molecules 25(19): 4479.
Chitprasert, P., Dumrongchai,
T. & Rodklongtan, A. 2023. Effect of in vitro dynamic gastrointestinal digestion on antioxidant activity and bioaccessibility of vitexin nanoencapsulated in vaterite calcium carbonate. LWT 173: 114366.
Cho, S-J. 2020. Changes in the
antioxidant properties of rice bran protein isolate upon simulated
gastrointestinal digestion. LWT 126: 109206.
Choudhry, R., Yasmin, A.,
Aslan, M.A., Iran, A., Ahmad, R.S., Saeed, F., Islam, F., Zahoor,
T., Shah, M.A. & Rasool, A. 2023. Extraction of
protein from apricot kernel oil press cake (AKOPC) through innovative
techniques and the formulation of supplemented yogurt. Food Science &
Nutrition 11(10): 6085-6095.
Cotabarren, J., Rosso, A.M., Tellechea, M., Grcia-Pardo, J.,
Rivera, J.L., Obregon, W.D. & Parisi, M.G. 2019.
Adding value to the chia (Salvia hispanicaL.)
expeller: Production of bioactive peptides with antioxidant properties by
enzymatic hydrolysis with papain. Food Chemistry 15: 848-856.
Daud, N., Babji, A.S., Abidin, I.K.Z., Muslim, M. & Yusop,
S.M. 2022. Kesan masa pendidihan dan simulasi pencernaan ke atas protein dan hidrolisat protein yang dihasilkan daripada sarang burung walit spesis Aeodramus fuciphagus. Sains Malaysiana 51(7): 2295-2304.
de Figueiredo, V.R.G., Yamashita, F., Vanzela,
A.L.L., Ida, E.I. & Kurozawa, L.E. 2018. Action of multi-enzyme
complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology 55(4):
1508-1517.
de Morais,
F.P.R., Pessato, T.B., Rodrigues, E., Mallmann, L.P., Mariutti, L.R.B.
& Netto, F.M. 2020. Whey protein and phenolic
compound complexation: Effects on antioxidant capacity before and after in
vitro digestion. Food Research International 133: 109104.
Gorissen, S.H.M., Crombag,
J.J.R., Senden, J.M.G., Waterval,
W.A.H., Bierau, J., Verdijk,
L.B. & van Loon, L.J.C. 2018. Protein content and amino acid composition of
commercially available plant-based protein isolates. Amino Acids 50(12):
1685-1695.
Hou, Y., Yoon, Y., Oh, E., Sung,
B. & Kim, Y. 2022. Effects of soy protein hydrolysates on antioxidant
activity and inhibition of muscle loss. International Food Research Journal 29(6): 1458-1467.
Ibrahim,
E.S.K. & Ghani, M.A. 2020. The effect of enzymatic hydrolysis on the
antioxidant activities and amino acid profiles of defatted chia (Salvia hispanicaL.) flour. Food Research 4(Suppl. 4):
38-50.
Ibrahim,
E.S.K., Ghani, M.A. & Babji, A.S. 2021.
Assessment of total phenolic content, antioxidative activities and amino acids profiles of low molecular weight chia hydrolysates
fractions and identification of the potential antioxidant peptides sequences. Bioscience
Research 18(SI-2): 8-25.
Idowu, A.O., Famuwagun,
A.A., Fagbemi, T.N. & Aluko,
R.E. 2021. Antioxidant and enzyme-inhibitory properties of sesame seed protein
fractions and their isolate and hydrolysate. International Journal of Food
Properties 24(1): 780-795.
Ijarotimi, O.S., Akinola-Ige,
A.O. & Oluwajuyitan, T.D. 2023. Okra seeds
proteins: Amino acid profile, free radical scavenging activities and inhibition
of diabetes and antihypertensive converting enzymes indices. Measurement:
Food 11: 100101.
Islam, M., Huang, Y., Islam,
S., Fan, B., Tong, L. & Wang, F. 2022. Influence of the degree of
hydrolysis on functional properties and antioxidant activity of enzymatic
soybean protein hydrolysates. Molecules 27(18): 6110.
Khushairay, E.S.I., Ghani, M.A., Babji,
A.S. & Yusop, S.M. 2023. The nutritional and
functional properties of protein isolates from defatted chia flour using
different extraction pH. Foods 12(16): 3046.
Kut, K., Bartosz,
G. & Sadowska-Bartosz, I. 2023. Denaturation and
digestion increase the antioxidant capacity of proteins. Processes 11(5): 1362.
Latrobdiba, Z.M., Fulyani,
F. & Anjani, G. 2023. Liposome optimization for
oral delivery of nutraceuticals in food: A review. Food Research 7(3):
233-246.
Liang, X.R., Mao, X.Y., Wu,
Q.Z., Zhang, J. & Zhu, X.R. 2022. Effects of simulated gastrointestinal
digestion on chickpea protein, and its hydrolysate physicochemical properties,
erythrocyte hemolysis inhibition, and chemical antioxidant activity. International
Food Research Journal 30(1): 96-108.
Liu, W-Y., Zhang, J-T., Miyakawa, T., Li, G-M., Gu, R-Z.
& Tanokura, M. 2021. Antioxidant properties and
inhibition of angiotensin converting enzyme by highly active peptides from
wheat gluten. Scientific Reports 11: 5206.
Markus,
V., Paul, A.A., Terali, K., Oser,
K., Marks, R.S., Golberg, K. & Kushmaro, A. 2023. Conversation in the gut: The role of
quorum sensing in normobiosis. International
Journal of Molecular Sciences 24(4): 3722.
Marcinek, P. & Krejpcio,
Z. 2017. Chia seed (Salvia hispanica): Health
promoting properties and the therapeutic applications - A review. Annals of the
National Institute of Hygiene 68: 123-129.
Mariotti, F. & Gardner, C.D. 2019.
Dietary protein and amino acids in vegetarian diets - A review. Nutrients 11(11): 2661.
Nnamezie, A.A., Famuwagun,
A.A. & Gbadamosi, S.O. 2021. Characterization of
okra seed flours, protein concentrated, protein isolate and enzymatic
hydrolysates. Food Production, Processing and Nutrition 3: 14.
Nwachukwu, I.D. & Aluko, R.E. 2019. Structural and functional properties of
food protein-derived antioxidant peptides. Journal of Food Biochemistry 43: e12761.
Ozon, B., Cotabarren,
J., Valicenti, T., Parisi,
M.G. & Obregon, W.D. 2022. Chia expeller: A promising source of
antioxidant, antihypertensive and antithrombotic peptides produced by enzymatic
hydrolysis with Alcalase and flavourzyme. Food Chemistry 380: 132185.
Pelaez, P., Orona-Tamayo,
D., Montes-Hernández, S., Valverde, M.E., Paredes-López, O. & Cibrián-Jaramillo,
A. 2019. Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica(chia). Scientific Reports 9(1):
9761.
Rabail, R., Khan, M.R., Mehwish, H.M., Rajoka, M.S.R.,
Lorenzo, J.M., Kieliszek, M., Khalid, A.R., Shabbir, M.A. & Aadil, R.M.
2021. An overview of chia seed (Salvia hispanicaL.)
bioactive peptides’ derivation and utilization as an emerging nutraceutical
food. Frontiers in Bioscience Landmark 9: 643-654.
Shahi, Z., Sayyed-Alangi,
S.Z. & Najafian, L. 2020. Effects of enzyme type
and process time on hydrolysis degree, electrophoresis bands and antioxidant
properties of hydrolyzed protein derived from defatted Bunium persicum Bioss. press
cake. Heliyon 6(2): e03365.
Shao, L.L., Xu, J., Shi, M.J.,
Wang, X.L., Li, Y.T., Kong, L.M. & Zhou, T. 2017. Preparation, antioxidant
and antimicrobial evaluation of hydroxamated degraded
polysaccharides from Enteromorpha prolifera. Food
Chemistry 237: 481-487.
Shuai, X., Gao, L., Geng, Q., Li, T., He, X., Chen, J., Liu, C. & Dai, T.
2022. Effects on moderate enzymatic hydrolysis on structure and functional
properties of pea protein. Foods 11(15): 2368.
Sun, X., Acquah,
C., Aluko, R.E. & Udenigwe,
C.C. 2020. Considering food matrix and gastrointestinal effects in
enhancing bioactive peptide absorption and bioavailability. Journal of
Functional Foods 64: 103680.
Tabtabaei, S., Vitelli, M., Rajabzadeh, A.R. & Legge,
R.L. 2017. Analysis of protein enrichment during single- and multi-stage tribo-electrostatic bioseparation processes for dry fractionation of legume flour. Separation and Purification
Technology 176: 48-58.
Vinayashree, S. & Vasu, P. 2021.
Biochemical, nutritional and functional properties of protein isolate and
fractions from pumpkin (Cucurbita moschatavar.
Kashi Harit) seeds. Food Chemistry 340(2):
128177.
Wang, B., Xie,
N.N. & Li, B. 2019. Influence of peptide characteristics on their
stability, intestinal transport, and in vitro bioavailability: A
review. Journal of Food Biochemistry 43(1): e12571.
Wootton-Beard, P.C., Moran, A.
& Ryan, L. 2011. Stability of the total antioxidant capacity and total
polyphenol content of 23 commercially available vegetable juices before and
after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Research International 44:
217-224.
Xu, J., Jiang, S., Liu, L.,
Zhao, Y. & Zeng, M. 2021. Encapsulation of oyster protein hydrolysates in nanoliposomes: Vesicle characteristics, storage stability, in
vitro release, and gastrointestinal digestion. Journal of Food Science 86(3): 960-968.
Zain, N.M., Ghani, M.A., Kasim, Z.M. & Hashim, H.
2021. Effects of different drying methods on the functional properties and
physicochemical characteristics of chia mucilage powder (Salvia hispanicaL.). Sains Malaysiana 50(12): 3603-3615.
Zielinska, E., BaRaniak,
B. & Karas, M. 2017. Antioxidant and
anti-inflammatory activities of hydrolysates and peptide fractions obtained by
enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 9:
970.
*Corresponding author; email: salma_my@ukm.edu.my
|