Sains Malaysiana 53(1)(2024): 111-122

http://doi.org/10.17576/jsm-2024-5301-09

 

Kesan Pencernaan Gastrousus terhadap Ciri Fizikokimia dan Kebiotersediaan Antioksidan Produk Chia

(The Effects of Gastrointestinal Digestion on the Physicochemical Characteristics and Antioxidants Bioavailability of Chia Products)

 

ETTY SYARMILA IBRAHIM KHUSHAIRAY1, CHANG YU IAN1, SALMA MOHAMAD YUSOP1,3,*, MA’ARUF ABD GHANI2, MOHAMAD YUSOF MASKAT1,3, ABDUL SALAM BABJI1,3 & NUR ALIAH DAUD1

 

1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 

2Fakulti Perikanan dan Sains Makanan, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Pusat Inovasi Teknologi Manisan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 13 October 2023/Accepted: 11 January 2024

 

Abstrak

Chia (Salvia hispanica L.) adalah bijirin pseudo yang kaya dengan asid lemak tak tepu (PUFA) dan protein berfungsi. Kajian ini bertujuan untuk menentukan sifat fizikokimia dan kebiotersediaan antioksidan produk chia iaitu tepung chia ternyah lemak (TCT), pencilan protein chia (IPC), hidrolisat protein chia (HPC) dan nanokapsul hidrolisat protein chia (nHPC). Simulasi model pencernaan gastrousus secara in-vitro telah mengasingkan protein chia kepada empat pecahan berbeza iaitu sampel sebelum dicerna (ND), fraksi tercerna pasca-gastrik (PG), fraksi tercerna pasca-usus yang diserap oleh kolon (PUa) dan fraksi tercerna pasca-usus yang tertinggal dalam kolon (PUb). Sampel nHPC mencatatkan darjah hidrolisis (DH) paling rendah (p<0.05) (19.72%) selepas fasa pencernaan gastrik dan tiada perubahan signifikan (p<0.05) selepas pencernaan usus. Penyusutan (p<0.05) nilai asid amino hidrofobik (AAH) dan asid amino aromatik (AAR) bagi sampel nHPC direkodkan selepas pencernaan gastrousus (PUa), masing-masing sebanyak 4.81 dan 3.95%. Berbanding semua sampel, HPC dan nHPC mencatatkan nilai tertinggi (p<0.05) dalam ujian antioksidan DPPH (70.38 dan 68.10 µM TE), ABTS (166.19 dan 167.14 µM TE) dan FRAP (73.25 dan 77.81 µM FeSO4.7H2OE). Pencernaan gastrousus meningkatkan (p<0.05) potensi pemerangkapan radikal DPPH dan ABTS sampel TCT dan IPC, sebaliknya mengurangkan (p<0.05) potensi antioksidan bagi sampel HPC. Berdasarkan ujian FRAP, pencernaan gastrousus tidak memberi kesan (p<0.05) terhadap kapasiti antioksidan bagi sampel nHPC. Kesimpulannya, pencernaan gastrousus mempengaruhi sifat fisikokimia dan kebiotersediaan antioksidan produk chia yang dikaji, memberikan kefahaman penting tentang manfaat kesihatan dan aplikasi produk chia dalam diet pemakanan manusia.

 

Kata kunci: Kebiotersediaan antioksidan; produk chia; profil asid amino; simulasi model pencernaan gastrousus

 

Abstract

Chia (Salvia hispanica L.) is a pseudocereal rich in polyunsaturated fatty acids (PUFA) and functional proteins. This study aims to determine the physicochemical properties and antioxidative bioavailability of chia products, namely, defatted chia flour (TCT), chia protein isolate (IPC), chia protein hydrolysates (HPC), and nano encapsulated chia hydrolysates (nHPC). An in-vitro gastrointestinal digestion simulation model separated chia protein into four distinct fractions, namely, non-digested sample (ND), post-gastric digestion fraction (PG), post-intestinal digested fraction absorbed by colon (PUa), and post-intestinal digested fraction remains in colon (PUb). nHPC exhibited the lowest (p<0.05) degree of hydrolysis (DH) (19.72%) after gastric phase, and there were no significant changes (p<0.05) after intestinal digestion. A significant decrease (p<0.05) in the hydrophobic amino acid (AAH) and aromatic amino acid (AAR) values were recorded for the nHPC sample by 4.81 and 3.95%, respectively, after gastrointestinal digestion (PUa). Compared to all samples, HPC and nHPC recorded the highest (p<0.05) values in DPPH (70.38 and 68.10 µM TE), ABTS (166.19 and 167.14 µM TE), and FRAP (73.25 and 77.81µM FeSO4.7H2OE). Gastrointestinal digestion increased (p<0.05) the DPPH and ABTS radical scavenging potential for TCT and IPC but reduced (p<0.05) the antioxidant potential for HPC. Based on FRAP findings, gastrointestinal digestion had no effect (p<0.05) on the antioxidant capacity of nHPC. In conclusion, gastrointestinal digestion affects the physicochemical properties and antioxidative bioavailability of the chia products studied, providing an essential insight into their health benefits and applications in human diet. 

 

Keywords: Amino acids profiles; antioxidative bioavailability; chia products; simulated gastrointestinal digestion model

 

REFERENCES

Abdul Manan, M., Samat, N., Kasran, M. & Hassan, H. 2017. Proximate and amino acids composition of Monascus fermented products with potential as functional feed ingredients. Cogent Food and Agriculture 3(1): 1295767.

Akbarian, M., Khani, A., Eghbalpour, S. & Uversky, V.N. 2022. Bioactive peptides: Synthesis, sources, applications, and proposed mechanism of action. International Journal of Molecular Science 23(3): 1445.

Amigo, L. & Hernandez-Ledesma, B. 2020. Current evidence on bioavailability of food bioactive peptides. Molecules 25(19): 4479.

Chitprasert, P., Dumrongchai, T. & Rodklongtan, A. 2023. Effect of in vitro dynamic gastrointestinal digestion on antioxidant activity and bioaccessibility of vitexin nanoencapsulated in vaterite calcium carbonate. LWT 173: 114366.

Cho, S-J. 2020. Changes in the antioxidant properties of rice bran protein isolate upon simulated gastrointestinal digestion. LWT 126: 109206.

Choudhry, R., Yasmin, A., Aslan, M.A., Iran, A., Ahmad, R.S., Saeed, F., Islam, F., Zahoor, T., Shah, M.A. & Rasool, A. 2023. Extraction of protein from apricot kernel oil press cake (AKOPC) through innovative techniques and the formulation of supplemented yogurt. Food Science & Nutrition 11(10): 6085-6095.

Cotabarren, J., Rosso, A.M., Tellechea, M., Grcia-Pardo, J., Rivera, J.L., Obregon, W.D. & Parisi, M.G. 2019. Adding value to the chia (Salvia hispanicaL.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with papain. Food Chemistry 15: 848-856.

Daud, N., Babji, A.S., Abidin, I.K.Z., Muslim, M. & Yusop, S.M. 2022. Kesan masa pendidihan dan simulasi pencernaan ke atas protein dan hidrolisat protein yang dihasilkan daripada sarang burung walit spesis Aeodramus fuciphagus. Sains Malaysiana 51(7): 2295-2304.

de Figueiredo, V.R.G., Yamashita, F., Vanzela, A.L.L., Ida, E.I. & Kurozawa, L.E. 2018. Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology 55(4): 1508-1517.

de Morais, F.P.R., Pessato, T.B., Rodrigues, E., Mallmann, L.P., Mariutti, L.R.B. & Netto, F.M. 2020. Whey protein and phenolic compound complexation: Effects on antioxidant capacity before and after in vitro digestion. Food Research International 133: 109104.

Gorissen, S.H.M., Crombag, J.J.R., Senden, J.M.G., Waterval, W.A.H., Bierau, J., Verdijk, L.B. & van Loon, L.J.C. 2018. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50(12): 1685-1695.

Hou, Y., Yoon, Y., Oh, E., Sung, B. & Kim, Y. 2022. Effects of soy protein hydrolysates on antioxidant activity and inhibition of muscle loss. International Food Research Journal 29(6): 1458-1467.

Ibrahim, E.S.K. & Ghani, M.A. 2020. The effect of enzymatic hydrolysis on the antioxidant activities and amino acid profiles of defatted chia (Salvia hispanicaL.) flour. Food Research 4(Suppl. 4): 38-50.

Ibrahim, E.S.K., Ghani, M.A. & Babji, A.S. 2021. Assessment of total phenolic content, antioxidative activities and amino acids profiles of low molecular weight chia hydrolysates fractions and identification of the potential antioxidant peptides sequences. Bioscience Research 18(SI-2): 8-25.

Idowu, A.O., Famuwagun, A.A., Fagbemi, T.N. & Aluko, R.E. 2021. Antioxidant and enzyme-inhibitory properties of sesame seed protein fractions and their isolate and hydrolysate. International Journal of Food Properties 24(1): 780-795.

Ijarotimi, O.S., Akinola-Ige, A.O. & Oluwajuyitan, T.D. 2023. Okra seeds proteins: Amino acid profile, free radical scavenging activities and inhibition of diabetes and antihypertensive converting enzymes indices. Measurement: Food 11: 100101.

Islam, M., Huang, Y., Islam, S., Fan, B., Tong, L. & Wang, F. 2022. Influence of the degree of hydrolysis on functional properties and antioxidant activity of enzymatic soybean protein hydrolysates. Molecules 27(18): 6110.

Khushairay, E.S.I., Ghani, M.A., Babji, A.S. & Yusop, S.M. 2023. The nutritional and functional properties of protein isolates from defatted chia flour using different extraction pH. Foods 12(16): 3046.

Kut, K., Bartosz, G. & Sadowska-Bartosz, I. 2023. Denaturation and digestion increase the antioxidant capacity of proteins. Processes 11(5): 1362.

Latrobdiba, Z.M., Fulyani, F. & Anjani, G. 2023. Liposome optimization for oral delivery of nutraceuticals in food: A review. Food Research 7(3): 233-246.

Liang, X.R., Mao, X.Y., Wu, Q.Z., Zhang, J. & Zhu, X.R. 2022. Effects of simulated gastrointestinal digestion on chickpea protein, and its hydrolysate physicochemical properties, erythrocyte hemolysis inhibition, and chemical antioxidant activity. International Food Research Journal 30(1): 96-108.

Liu, W-Y., Zhang, J-T., Miyakawa, T., Li, G-M., Gu, R-Z. & Tanokura, M. 2021. Antioxidant properties and inhibition of angiotensin converting enzyme by highly active peptides from wheat gluten. Scientific Reports 11: 5206.

Markus, V., Paul, A.A., Terali, K., Oser, K., Marks, R.S., Golberg, K. & Kushmaro, A. 2023. Conversation in the gut: The role of quorum sensing in normobiosis. International Journal of Molecular Sciences 24(4): 3722.

Marcinek, P. & Krejpcio, Z. 2017. Chia seed (Salvia hispanica): Health promoting properties and the therapeutic applications - A review. Annals of the National Institute of Hygiene 68: 123-129.

Mariotti, F. & Gardner, C.D. 2019. Dietary protein and amino acids in vegetarian diets - A review. Nutrients 11(11): 2661.

Nnamezie, A.A., Famuwagun, A.A. & Gbadamosi, S.O. 2021. Characterization of okra seed flours, protein concentrated, protein isolate and enzymatic hydrolysates. Food Production, Processing and Nutrition 3: 14.

Nwachukwu, I.D. & Aluko, R.E. 2019. Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry 43: e12761.

Ozon, B., Cotabarren, J., Valicenti, T., Parisi, M.G. & Obregon, W.D. 2022. Chia expeller: A promising source of antioxidant, antihypertensive and antithrombotic peptides produced by enzymatic hydrolysis with Alcalase and flavourzyme. Food Chemistry 380: 132185.

Pelaez, P., Orona-Tamayo, D., Montes-Hernández, S., Valverde, M.E., Paredes-López, O. & Cibrián-Jaramillo, A. 2019. Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica(chia). Scientific Reports 9(1): 9761.

Rabail, R., Khan, M.R., Mehwish, H.M., Rajoka, M.S.R., Lorenzo, J.M., Kieliszek, M., Khalid, A.R., Shabbir, M.A. & Aadil, R.M. 2021. An overview of chia seed (Salvia hispanicaL.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Frontiers in Bioscience Landmark 9: 643-654.  

Shahi, Z., Sayyed-Alangi, S.Z. & Najafian, L. 2020. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed protein derived from defatted Bunium persicum Bioss. press cake. Heliyon 6(2): e03365.

Shao, L.L., Xu, J., Shi, M.J., Wang, X.L., Li, Y.T., Kong, L.M. & Zhou, T. 2017. Preparation, antioxidant and antimicrobial evaluation of hydroxamated degraded polysaccharides from Enteromorpha prolifera. Food Chemistry 237: 481-487.

Shuai, X., Gao, L., Geng, Q., Li, T., He, X., Chen, J., Liu, C. & Dai, T. 2022. Effects on moderate enzymatic hydrolysis on structure and functional properties of pea protein. Foods 11(15): 2368.

Sun, X., Acquah, C., Aluko, R.E. & Udenigwe, C.C. 2020. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. Journal of Functional Foods 64: 103680.

Tabtabaei, S., Vitelli, M., Rajabzadeh, A.R. & Legge, R.L. 2017. Analysis of protein enrichment during single- and multi-stage tribo-electrostatic bioseparation processes for dry fractionation of legume flour. Separation and Purification Technology 176: 48-58.

Vinayashree, S. & Vasu, P. 2021. Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschatavar. Kashi Harit) seeds. Food Chemistry 340(2): 128177.

Wang, B., Xie, N.N. & Li, B. 2019. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review.  Journal of Food Biochemistry 43(1): e12571.

Wootton-Beard, P.C., Moran, A. & Ryan, L. 2011. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and FolinCiocalteu methods. Food Research International 44: 217-224.

Xu, J., Jiang, S., Liu, L., Zhao, Y. & Zeng, M. 2021. Encapsulation of oyster protein hydrolysates in nanoliposomes: Vesicle characteristics, storage stability, in vitro release, and gastrointestinal digestion. Journal of Food Science 86(3): 960-968.

Zain, N.M., Ghani, M.A., Kasim, Z.M. & Hashim, H. 2021. Effects of different drying methods on the functional properties and physicochemical characteristics of chia mucilage powder (Salvia hispanicaL.). Sains Malaysiana 50(12): 3603-3615. 

Zielinska, E., BaRaniak, B. & Karas, M. 2017. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 9: 970.

 

*Corresponding author; email: salma_my@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous